Site icon Eogogics

Signal Processing

  • Discrete Time Signal Processing
    • Sampling Theorem:  Continuous and Discrete time
    • Interpolation and Up sampling
    • Decimation and Down sampling
    • ADC and DAC Convertors
    • Overview of Transforms
    • Convolution Operation
    • IIR and FIR Filter Structures
      • Pole-Zero Representations
  • Fourier and Z Transforms
    • Power Spectral Density (PSD)
    • Linear Filtering
    • Discrete Fourier Transforms (DFT)
    • FFT and IFFT
  • Probability Overview
    • Mean, Variance, Several Theorems
    • PDF Examples:  Gaussian, Erlang, Exponential, Uniform, etc.
    • Central Limit Theorem
    • Hypothesis Testing (MAP, ML)
    • Calculating Probability of Error
      • Digital Communications Systems Example
    • The importance of the PDF and CDF
  • Linear Algebra Methods
    • Dot Product and Cross Product
    • Matrix Inversion
    • Eigen Decomposition
  • Adaptive Signal Processing
    • Minimum Mean Square Error (MMSE)
    • Least Mean Squared (LMS) and NLMS
    • Recursive Least Squared (RLS)
    • Direct Matrix Inversion (DMI)
    • Maximum Likelihood Estimation (MLE)
    • Interpolation Techniques (Lagrange, Linear)
  • Equalization Methods
    • Decision Feedback Equalization (DFE)
    • Maximum Likelihood Sequence Equalizer (MLSE)
  • Communications Applications
    • DC Offset Estimation
    • Automatic Frequency Correction (AFC)
    • Channel Estimation
    • Likelihood Ratio Testing
    • Phase Noise
  • Estimators
    • Properties of Estimators
    • Digital Communications Application (BER)
  • Wrap-up
    • Course Recap and Q/A
    • Evaluations

 

 

Exit mobile version