Day One: Geometric Dimensioning and Tolerancing Concepts
- Dimensioning and Tolerancing Introductory Concepts. Dimensional control history. Dimensioning standardization and standards. The nature of variation, including process, tool wear, operator error, operator bias, material variations, ambient conditions, processing equipment differences, maintenance, inspection variation, and assembly variation. Plus/minus (±) tolerances and geometric tolerances. Title block tolerances. Local ± tolerances. Geometric dimensioning and tolerancing. Geometric dimensioning and tolerancing advantages.
- Dimensioning and Tolerancing Symbology. General symbols and abbreviations. Symbol application. Geometric tolerancing symbols. Symbol shapes and sizes. Feature control frames. Feature control frame composition. Feature control frame placement. Surfaces, features of size, threads, gears and splines, and datums. Datum feature and target symbols. Datum targets. Basic dimensions and basic dimension symbol. Group exercises.
- Basic Geometric Dimensioning Concepts. Form, orientation, location, and profile. Dimensioning rules, features, feature of size, local size, mating envelope, mating size, modifiers and symbols, feature control frames, Rules 1, 2, and 2A, bonus tolerance, virtual condition, and inner and outer boundaries. Group exercises.
- Datums and Datum References. Datum description, technology, and terminology. The datum reference frame. Datum identification. Datum functions and references. Datums applied to planes, cylindrical features, slopes, and other features. Datum features of size. Datum simulation. Datum order of precedence. Datum references in feature control frames. Group exercises.
- Form and Orientation Controls. Flatness, straightness, circularity, cylindricity. Surface, axis, and centerplane applications. Perpendicularity, parallelism, and angularity. When and how to apply orientation controls. Modifiers. Tangent plane, surface, axis, and center plane applications. Controlling hole axis orientation and virtual condition of a hole. Orientation as a form control. Gaging principles. Group exercises.
Day Two: Tolerancing and Advanced Concepts
- Geometric Tolerancing. Position and position tolerancing. Feature control frame position tolerance feature. Implied basic relationships. Material condition modifier application and Rule 2. Position tolerance zone. Basic dimensions and true positions. Relationships to datum reference frames. Material condition modifier effects. Regardless of feature size. Maximum material and least material conditions. Tolerance calculation. Fasteners. Bonus tolerances. Threads. Projected tolerance zones. Group exercises.
- Position Tolerancing Advanced Concepts. Concentricity and symmetry Controls. Concentricity and symmetry definitions. Composite position tolerances. Repeated versus nonrepeated datum referencing. Tolerance zones. Two line feature control frames. Comparisons. Position control. Coaxial and radial hole patterns. Group exercises.
- Runout Controls. Circular runout. Feature control frame. Circular runout applications as applied to cylinders, noncylindrical features, and face surfaces. The datum axis. Single and simultaneous datum features. Limited tolerance zone applications. Total runout and applications. Total runout applied to cylinders and face surfaces. Combined effects of size and runout tolerances. Group exercises.
- Profile Tolerances. Profile specification. Line and surface profiles. Limits of application. All around application. Bidirectional and unidirectional control and tolerance. Achievable control levels. Control of surface features, including form, orientation, and location. Controls on coplanar features. Coplanarity, orientation, and location. Coplanarity applied to conical surfaces. Composite profile tolerances. Group exercises.
- Tolerance Analysis. Worst case tolerance analysis in the geometric dimensioning and tolerancing world. Tolerance analysis assumptions. ASME and ISO dimensioning and tolerancing standards. Converting geometric dimensioning and tolerancing into equal-bilateral plus/minus tolerances. Group exercises.
- Course Wrap-Up. Course review. Questions and answers. Plans for future actions.Course critique.